CHEMISTRY | Curriculum Map and Pacing Guide

COURSE DESCRIPTION:

This course is organized around a central theme: Properties of matter are a consequence of its structure. A working chemistry vocabulary is developed early through quantitative lab work. Students evaluate the function of chemistry in society and in their lives. They learn basic measurement principles and mathematical techniques used in problem solving and lab work. Study of structure includes the atom and subatomic particles. The periodic system of classification is explored. Students learn about chemical bonds and resulting molecular geometries and study the states of matter, reaction rates, equilibrium, acid/base chemistry, nuclear chemistry, and organic chemistry.

Course SCI340 1 year, 1 credit Grades 10-12

Prerequisite: Physical Science and Geometry, Honors Biology or comparable course; teacher recommendation

QUARTER 1			
Topic: Introduction to Chemistry	Topic: Introduction to Chemistry and Matter		
Key Terms: fact, law, theory, pre	cision, accuracy, element, compound, mixture, matter, energy, co	nservation laws	
Measurable Skills: Calculate: Per	rcent error, K to C temperatures, C to K temperatures, density		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations	
C.PM.1: Atomic structure	Explain why mass is used as a quantity of matter and	Eureka Video	
	differentiate between mass and weight.	Weight vs. Mass Activity	
	Explain density qualitatively and solve density problems by	Density Sheet	
	applying an understanding of the concept of density.	Density of Al lab	
	Calculate percent error and analyze experimental errors that	Lab Calculations	
	affect percent error.	Error Sheet	
	Explain the basis and importance of the absolute temperature	Temperature Conversion Sheet	
	scale and convert between the Kelvin and Celsius scales.	Measurement Challenge	
	Compare the characteristics of elements, compounds, and	Vocabulary Journals	
	mixtures.	CO2 Extinguisher Demo	
	Compare the definition of matter and energy and the laws of	Vocabulary Journals	
	conservation of matter and energy.	Change in Mass Lab	
	Describe how matter is classified by state of matter and by	Lecture	
	composition.	Fire Writing Demo	

QUARTER 1			
Topic: Introduction to Chemistry	and Matter		
Key Terms: fact, law, theory, pre	cision, accuracy, element, compound, mixture, matter, energy, co	nservation laws	
Measurable Skills: Calculate: Per	cent error, K to C temperatures, C to K temperatures, density		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations	
	Explain the difference between chemical and physical changes and demonstrate how these changes can be used to separate mixtures and compounds into their components.	Lecture Chemical and Physical Properties Demo	
	Define chemical and physical properties and compare them by providing examples.	Chem. vs. Phys. Prop. Activity	
	Describe differences between solids, liquids, and gases at the atomic and molecular levels.	Video State of Matter Activity	
	Describe and perform common separation techniques (e.g., filtration, distillation, and chromatography).	Quantitative Separation Lab Qualitative Separation Lab Paper Chromatography Lab	

	QUARTER 1		
Topic: Structure of the Atom			
Key Terms: Wave, Wavelength, Fi	requency, Wave energy, Wave speed, Orbitals		
Measurable Skills: Use Periodic ta	able, Calculate Avg. Atomic Mass, Determine Elemental Electron C	Configurations	
Ohio Science Standards (2018)	Student Learning Targets Learning Activities/Investigations		
C.PM.1: Atomic structure	Compare characteristics of isotopes of the same element.	Isotopes Sheet	
		Isotopes and Ropes Demo	
		Beanium Lab	
	Describe the importance of models for the study of atomic	World of Chemistry Model Video Sheet	
	structure.		
	Describe the crucial contributions of scientists and the critical	Timeline Activity	
	experiments that led to the development of the modern	Cathode Ray Tube demo	
	atomic model.	Rutherford Scattering Lab	
	Use the periodic table to determine the atomic number;	Isotopes Sheet	
	atomic mass; mass number; and number of protons,		
	electrons, and neutrons in isotopes of elements.		

QUARTER 1		
Topic: Structure of the Atom		
Key Terms: Wave, Wavelength, Fi	requency, Wave energy, Wave speed, Orbitals	
Measurable Skills: Use Periodic to	able, Calculate Avg. Atomic Mass, Determine Elemental Electron (Configurations
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	Calculate the weighted average atomic mass of an element from isotopic abundance, given the atomic mass of each contributor.	Avg. Atomic Mass Sheet
	Describe characteristics of a wave, such as wavelength, frequency, energy, and speed.	Vocabulary Journals Flame Test Demo Gas Tubes and Spectroscopes demo
	Describe the role of probability in orbital theory.	Lecture Quantum Mechanical Lab
	Describe atomic orbitals (s, p, d, f) and their basic shapes.	Vocabulary Journals
	Apply Hund's rule and the Aufbau process to specify the electron configurations of the elements.	Electron Configuration Sheets Paramagnetism Demo

QUARTER 1			
Topic: Periodic Table and Ionic B	onding		
Key Terms: period, group, family	, series, ionic compound, ionic bond		
Measurable Skills: Draw Ionic Le	wis Structures, Convert Ionic Compound Names to formulas and vio	ce versa	
Ohio Science Standards (2018)	cience Standards (2018) Student Learning Targets Learning Activities/Investigations		
C.PM.2: Periodic Table	Describe the historical development of the modern periodic	Video/Lecture	
	table, including work by Mendeleev and then Moseley.		
	Describe and explain the organization of elements into periods	P.T. Trend Activity	
	and groups in the periodic table.		
	Identify regions (e.g., groups, families, and series) of the	P.T. Trend Activity	
	periodic table and describe the chemical characteristics of each.	Reactivity of Metals Demo	
	Compare the periodic properties of the elements (e.g.,	P.T. Trend Activity	
	metal/nonmetal/metalloid behavior, electrical/heat	Reactivity of Halogens Demo	
	conductivity, electronegativity and electron affinity, ionization		
	energy, atomic/covalent/ionic radius) and how they relate to		
	position in the periodic table.		

QUARTER 1		
Topic: Periodic Table and Ionic B	onding	
Key Terms: period, group, family	, series, ionic compound, ionic bond	
Measurable Skills: Draw Ionic Le	wis Structures, Convert Ionic Compound Names to formulas and vio	ce versa
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	Use the periodic table to predict and explain the valence electron configurations of the elements, to identify members of configuration families, and to predict the common valences of the elements.	P.T. Trend Activity
C.PM.4: Representing	Use the names, formulas, and charges of commonly referenced	Ion/Acid Quizzes
compounds	polyatomic ions AND common acids.	Cation Test Lab
	Provide the interconversion of Ionic formulas, and names, translation: write names for formulas and formulas from names).	Naming Compounds Sheet
	Use Lewis dot diagrams to represent bonding in ionic compounds.	Ionic Lewis structures and Elec. Configs. Sheet
C.PM.3: Chemical bonding	Describe the characteristics of ionic bonding.	Lecture
	Explain ionic stability, recognize typical ionic configurations, and predict ionic configurations for elements (e.g., electron configurations, Lewis dot models).	Ionic Lewis structures and Elec. Configs. Sheet
	Describe the nature of the chemical bond with respect to	Lecture
	valence electrons in Ionic bonding atoms.	Chemical Change Lab

QUARTER 1		
Topic: Covalent Bonding and Inter	molecular Forces	
Key Terms: Covalent compound, 0	Covalent bond, dipole moment, polarity, hydrogen bonding	
Measurable Skills: Draw covalent	Lewis Structures, Convert covalent Compound Names to formula	s and vice versa, identify molecular
geometries from Lewis structures		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C.PM.3 Chemical Bonding	Provide the interconversion of molecular formulas, structural	Naming Compounds Sheet
C.PM.6 Intermolecular Forces	formulas, and names, (translation: write names for formulas	
	and formulas from names).	

QUARTER 1

Topic: Covalent Bonding and Intermolecular Forces

Key Terms: Covalent compound, Covalent bond, dipole moment, polarity, hydrogen bonding

Measurable Skills: Draw covalent Lewis Structures, Convert covalent Compound Names to formulas and vice versa, identify molecular

geometries from Lewis structures

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	Describe the characteristics of covalent bonding.	Vocabulary Journal
	Describe the nature of the chemical bond with respect to	Lecture
	valence electrons in covalent bonding atoms.	
	Explain how ionic and covalent compounds differ.	World of Chemistry Bonds Video Sheet
	Explain and provide examples for dipole moments, bond	Video/Lecture
	polarity, and hydrogen bonding.	Viscosity of Liquids Demo
		Evaporation Lab
	Use Lewis dot diagrams to represent bonding in covalent	Covalent Lewis structures Sheet
	compounds.	
	Draw Lewis structures for molecules and polyatomic ions,	Covalent Lewis structures Sheet
	including those that must be represented by a set of	
	resonance structures.	
	Use VSEPR theory to explain geometries of molecules and	Molecular Geometry activity
	polyatomic ions.	Bubble Molecule Demo
	Describe how orbital hybridization models relate to molecular	Lecture
	geometry.	
	Describe the molecular orbital models for double bonds, triple	Lecture
	bonds, and delocalized pi electrons	
	Describe the relationship between molecular polarity and	Vocabulary Journal
	bond polarity.	Polar vs. Nonpolar Liquids Demo
		Graphite Dots Demo
		Water on a String Demo

	QUARTER 2	
Topic: Chemical Reactions		
Key Terms: solution, solute, solve	ent	
Measurable Skills: Write and bal	ance equations, classify chemical reactions, predict products of re	actions
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C.IM.1	Explain how conservation laws form the basis for balancing	Lecture
	chemical reactions and know what quantities are conserved in	
	physical, chemical, and nuclear changes.	
	Write and balance chemical equations, given the names of	Balancing Sheet
	reactants and products.	
	Describe what is represented, on a molecular and molar level,	Lecture
	by chemical equations.	Balloon to make H2O
	Use the appropriate symbols for state (i.e., solid, liquid,	Balancing Sheet
	gaseous, aqueous) and reaction direction when writing	
	chemical equations.	
	Classify chemical reactions as being synthesis, decomposition,	Balancing Sheet
	single replacement, or double replacement reactions.	Elephant Toothpaste demo
		Types of Reactions Lab
	Predict the products of synthesis, combustion, and	Predict Product Sheet
	decomposition reactions and write balanced equations for	Steel Balls SR Demo
	these reactions.	
	Predict products of single replacement reactions, using the	Predict Product Sheet
	activity series, and write balanced equations for these	Carbon Soufflé Demo
	reactions.	
	Predict the products of double replacement reactions, using	Predict Product Sheet
	solubility charts to identify precipitates, and write balanced	
	equations for these reactions.	
	Write ionic equations, identifying spectator ions and the net	Ionic equation Sheet
	ionic equation.	
	Define solution, solute, and solvent.	Vocabulary Journals

QUARTER 2

Topic: Mole and Stoichiometry

Key Terms: chemical symbols, empirical formulas, molecular formulas, structural formulas, mole, Avogadro's number, formula mass, empirical mass, molecular mass, gram molecular mass, and gram formula mass

Measurable Skills: calculate the percent composition, conversions from mass, moles, to particles, do stoichiometry, finding limiting reagents, and do percent yield

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C.IM.3: Stoichiometry C.PM.5 Quantifying Matter	Distinguish between chemical symbols, empirical formulas, molecular formulas, and structural formulas.	Vocabulary Journal
C.FIVI.3 Quantifying Matter	Interpret the information conveyed by chemical formulas for numbers of atoms of each element represented.	Counting atoms and Molar mass worksheet
	Calculate the percent composition of a substance, given its formula or masses of each component element in a sample.	Percent composition worksheet Hydrate Lab
	Determine the empirical formulas and molecular formulas of compounds, given percent composition data or mass composition data.	Empirical Formula Worksheet MgO Lab Baking Soda Lab
	Explain the meaning of mole and Avogadro's number.	Vocabulary Journal
	Interconvert between mass, moles, and number of particles. Distinguish between formula mass, empirical mass, molecular mass, gram molecular mass, and gram formula mass.	Conversion Worksheet Vocabulary Journal
	Use chemical equations to perform basic mole-mole, massmass, and mass-mole computations for chemical reactions.	Stoichiometry Worksheet
	Identify limiting reagents and use this information when solving reaction stoichiometry problems.	Limiting Reagent worksheet S'mores Activity
	Compute theoretical yield, actual (experimental) yield, and percent yield.	Percent Yield worksheet Nail Lab Al and CuCl2 Lab

QUARTER 2			
Topic: States of Matter			
Key Terms: gas pressure, torr, kil	opascals, mm Hg, atmospheres, van der Waals, dispersion, ionic, r	nolecular, metallic, and network	
Measurable Skills: Classify solids	as ionic, molecular, metallic or network		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations	
C.PM.6: Intermolecular Forces	Describe the phase and energy changes associated with boiling/condensing, melting/freezing, sublimation, and	Video Black blocks melting Demo	
	crystallization (deposition).		
	Define gas pressure and the various pressure units (e.g., torr,	Vocabulary Journal	
	kilopascals, mm Hg, and atmospheres).	Pressure mat Demo	
	Describe the use and operation of mercury barometers and	Vocabulary Journal	
	manometers to find atmospheric pressure or relative gas	Candle under glass demo	
	pressures.	Jelly Jars demo	
	Explain the basis for gaseous diffusion and effusion.	Effusion/Diffusion Demo	
	Use the kinetic molecular theory to explain the states and	World of Chemistry Matter of State video	
	properties (i.e., microscopic and macroscopic) of matter and	Super-heated steam demo	
	phase changes.		
	Use the kinetic-molecular theory as a basis for explaining gas	Reading with Questions	
	pressure, Avogadro's hypothesis, and Boyle's/Charles's laws.		
	Compare the different types of intermolecular forces (e.g., van	Vocabulary Journal	
	der Waals, dispersion).	Pop Can skating rink demo	
	Describe the unique physical and chemical properties of water	World of chemistry video Water	
	resulting from hydrogen bonding.	How ice skates work demo	
	Explain the relationship between evaporation, vapor pressure,	Reading with questions	
	molecular kinetic energy, and boiling point for a single pure		
	substance.		
	Explain the relationship between intermolecular forces, boiling	Worksheet	
	points, and vapor pressure when comparing differences in the		
	properties of pure substances.		
	Classify solids as ionic, molecular, metallic, or network.	Worksheet	

QUARTER 3		
Topic: Gases		
Key Terms: Avogadro's hypothes	iis, ideal gas, real gas, Boyle's law, Charles' law, Gay-Lussac's law, a	nd Dalton's law
Measurable Skills: Solve problem	ns using gas stoichiometry, ideal gas law, Boyle's law, Charles' law,	Gay-Lussac's law, and Dalton's law
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C.IM.2: Gas Laws	Predict boiling point changes based on changes in atmospheric pressure.	Syringe Demo
	Describe Avogadro's hypothesis and use it to solve stoichiometric problems.	Worksheet
	Explain the difference between an ideal and real gas, the assumptions made about an ideal gas, and what conditions favor ideal behavior for a real gas.	Notes Cartesian Diver Demo
	Apply the mathematical relationships that exist among the volume, temperature, pressure, and number of particles in an ideal gas.	Worksheet Calculating R with Water Displacement Lab
	Compute gas density when given molar mass, temperature, and pressure.	Worksheet Can Crush Demo
	Apply the ideal gas law to determine the molar mass of a volatile compound.	Worksheet Molar Mass of Air Lab
	Solve gas stoichiometry problems at standard and nonstandard conditions.	Worksheet CO2 Cannon Demo
	Define the gas laws given by Boyle, Charles, Gay-Lussac, and Dalton and solve problems based on these laws.	Vocabulary Journal Gas Laws Lab

QUARTER 3		
Topic: Solutions		
Key Terms: saturated, unsaturate	d, supersaturated, dilute, concentrated, molality, mole fraction, so	uspensions, colloids, and true solutions
Measurable Skills: Calculate changes in the boiling point and freezing point		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C.IM.3: Stoichiometry	Define the terms saturated, unsaturated, supersaturated,	Vocabulary Activity
	dilute, and concentrated as they pertain to solutions.	Super Saturated Demo
	Define and calculate the molarity of a solution.	Worksheet
		Composition of Acetic Acid Lab

	QUARTER 3		
Topic: Solutions			
Key Terms: saturated, unsaturate	d, supersaturated, dilute, concentrated, molality, mole fraction, s	uspensions, colloids, and true solutions	
Measurable Skills: Calculate chan	Measurable Skills: Calculate changes in the boiling point and freezing point		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations	
	Define and calculate the percent composition of a solution.	Worksheet	
	Describe the preparation and properties of solutions.	Book questions	
		Acid Base Titration Lab	
	Describe the relationship between temperature or pressure	Notes	
	and the solubility of gases in liquids.	Hand Boiler	
	Describe the relationship between solvent character and	Notes	
	solute character and explain miscibility.	Bubble Speed Demo	
	Apply the general rules of solubility to aqueous salt solutions.	Lab activity	
	Describe the factors affecting the solubility of a solute in a	Notes	
	given solvent and its rate of solution.		
	Describe qualitatively the effect of adding solute on freezing	Notes	
	point, boiling point, and vapor pressure of a solvent.		
	Define molality and mole fraction.	Vocabulary Activity	
	Compare properties of suspensions, colloids, and true	Vocabulary Activity	
	solutions.		
	Calculate changes in the boiling point and freezing point when	Worksheet Problems	
	nonvolatile, nonelectrolyte solutes are added to solvents.		

QUARTER 3		
Topic: Thermal Energy and Heat		
Key Terms: law of conservation of energy, heat, heat energy, temperature, enthalpy, endothermic, exothermic, entropy, chemical changes,		
and physical changes		
Measurable Skills: Calculate heat capacity, heat of fusion, heat of vaporization, heat of reaction, Hess' Law, and heat of reaction forward and		
reverse		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C.IM.1: Chemical reactions	Explain the law of conservation of energy in chemical	Notes
	reactions.	Boiling water in cup Demo

QUARTER 3

Topic: Thermal Energy and Heat

Key Terms: law of conservation of energy, heat, heat energy, temperature, enthalpy, endothermic, exothermic, entropy, chemical changes, and physical changes

Measurable Skills: Calculate heat capacity, heat of fusion, heat of vaporization, heat of reaction, Hess' Law, and heat of reaction forward and reverse

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	Describe the concept of heat, and explain the difference between heat energy and temperature.	Vocabulary Activity
	Explain physical and chemical changes as endothermic or exothermic energy changes.	Notes/Book problems Cold Pack Demo
	Solve heat capacity and heat transfer problems involving specific heat, heat of fusion, and heat of vaporization.	Hot Pack demo Worksheet Specific heat of unknown solid Enthalpy of fusion of water
	Calculate the heat of reaction for a given chemical reaction when given calorimetric data.	Worksheet Cheeto Calorimetry
	Define enthalpy and explain how changes in enthalpy determine whether a reaction is endothermic or exothermic.	Vocabulary Activity Fire Syringe demo Drinky Bird demo
	Compute ΔHrxn from ΔHf ^o values and explain why the ΔHf ^o values for elements are zero.	Worksheet
	Explain and apply, mathematically, the relationship between $\Delta Hrxn^{\circ}$ (forward) and $\Delta Hrxn^{\circ}$.	Worksheet
	Define entropy and explain the role of entropy in chemical and physical changes, and explain the changes that favor increases in entropy.	Vocabulary Activity

QUARTER 4

Topic: Reaction Rates

Key Terms: collision theory, reaction rates, kinetic theory, reaction mechanism, rate-determining step, activated complex, heat of reaction, activation energy, reaction kinetics, catalysts, and potential energy diagrams

Measurable Skills: Interpret and label a plot of energy versus reaction coordinate

Measurable Skills: Interpret and label a plot of energy versus reaction coordinate		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C.IM.1: Chemical reactions	Explain the collision theory of reactions	Vocabulary Activity
	Analyze factors (e.g., temperature, nature of reactants)	Notes
	affecting reaction rates in relation to the kinetic theory	Alka Seltzer Lab
	Relate reaction mechanism, rate-determining step, activated	Vocabulary Activity
	complex, heat of reaction, and activation energy to reaction kinetics	
	Interpret potential energy diagrams for chemical reactions	Notes
	Relate the rate of a chemical reaction to the appearance of products and the disappearance of reactants	Book Problems
	Describe the meaning of reaction mechanism and rate- determining step	Vocabulary Activity
	Relate collision theory to the factors that affect the rate of	Vocabulary Activity
	reaction.	Reaction Rates Book lab
		Inhibition of H2O2 Demo
	Describe the meaning of activation energy and activated complex.	Vocabulary Activity
	Interpret and label a plot of energy versus reaction coordinate.	Worksheet
	Explain the effects of catalysts on reaction rates (e.g.,	Notes
	mechanism, activation energy/activated complex).	Catalytic Oxidation of acetone demo
C.IM.1: Chemical reactions	Describe the unique features of bonding in carbon compounds.	Notes
	Describe the conditions that define equilibrium systems on a	Characteristics of Equilibrium Lab
	dynamic molecular level and on a static macroscopic scale.	N2 gas oscillator Demo
	Apply Le Châtelier's principle to explain a variety of changes in	Worksheet
	physical and chemical equilibria.	Cobalt Chloride Demo
		Copper Chloride Demo

QUARTER 4

Topic: Reaction Rates

Key Terms: collision theory, reaction rates, kinetic theory, reaction mechanism, rate-determining step, activated complex, heat of reaction, activation energy, reaction kinetics, catalysts, and potential energy diagrams

Measurable Skills: Interpret and label a plot of energy versus reaction coordinate

Mediatrable billion interpret and laber a plot of energy versus reaction coordinate		
Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	Define Ksp and manipulate Ksp to predict solubility.	Worksheet
	Explain the law of concentration (mass) action and write	Worksheet
	equilibrium law expressions for chemical equilibria.	
	Determine solubility product constants from solubilities (and	Notes and Problems
	vice versa) for a given solubility equilibrium system.	

QUARTER 4

Topic: Acids and Bases

Key Terms: acid, base, hydronium ion, amphoterism, Arrhenius and Brønsted-Lowry acids and bases, conjugate acids and bases, Kw, pH scale, percent ionization, Ka, Kb, buffer

Measurable Skills: Solve stoichiometry calculations based on reactions involving aqueous solutions, identify conjugate acids and bases in reactions, Write and balance a simple equation for a neutralization reaction, calculate hydrogen ion concentration, hydroxide ion concentration, pH, and pOH

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
C.IM.1: Chemical reactions	Solve stoichiometry calculations based on reactions involving	Notes and Problems
	aqueous solutions.	How to blow out a light bulb demo
	Describe the nature and interactions of acids and bases.	Notes
	Describe the hydronium ion and the concept of amphoterism.	Vocabulary activity
	Describe Arrhenius and Brønsted-Lowry acids and bases;	Notes and worksheet
	identify conjugate acids and bases in reactions.	
	Define the water constant, Kw, and the pH scale.	Vocabulary activity
	Describe characteristics of strong and weak acids and bases,	Vocabulary Activity
	and identify common examples of both.	Acid Strength demo
	Write and balance a simple equation for a neutralization	Notes and problems
	reaction.	
	Calculate hydrogen ion concentration, hydroxide ion	Notes and problems
	concentration, pH, and pOH for acidic or basic solutions.	Std. of NaOH lab

QUARTER 4

Topic: Acids and Bases

Key Terms: acid, base, hydronium ion, amphoterism, Arrhenius and Brønsted-Lowry acids and bases, conjugate acids and bases, Kw, pH scale, percent ionization, Ka, Kb, buffer

Measurable Skills: Solve stoichiometry calculations based on reactions involving aqueous solutions, identify conjugate acids and bases in reactions, Write and balance a simple equation for a neutralization reaction, calculate hydrogen ion concentration, hydroxide ion concentration, pH, and pOH

Ohio Science Standards (2018)	Student Learning Targets	Learning Activities/Investigations
	Explain how the acid-base indicators work.	Notes
		Rainbow reaction demo
	Define percent ionization, Ka, and Kb and explain how they	Vocabulary Activity
	relate to acid/base strength.	
	Qualitatively understand the behavior of a buffer and explain	Vocabulary Activity
	why buffer solutions maintain pH upon dilution.	Buffer Lab

District Instructional Resource:

World of Chemistry (2013) / Cengage (6-year online subscription: 2019-2020 to 2024-2025)

Standards Alignment:

Ohio Learning Standards (2018) - retrieved Jan. 2, 2019

 $\frac{http://education.ohio.gov/getattachment/Topics/Learning-in-Ohio/Science/Ohios-Learning-Standards-and-MC/SciFinalStandards121018.pdf.aspx?lang=en-US$